Growth from behind: Intercalation-growth of two-dimensional FeO moiré structure underneath of metal-supported graphene
نویسندگان
چکیده
Growth of graphene by chemical vapor deposition on metal supports has become a promising approach for the large-scale synthesis of high quality graphene. Decoupling of the graphene from the metal has been achieved by either mechanical transfer or intercalation of elements/molecules in between the metal and graphene. Here we show that metal stabilized two-dimensional (2D)-oxide monolayers can be grown in between graphene and the metal substrate thus forming 2D-heterostructures that enable tuning of the materials properties of graphene. Specifically, we demonstrate the intercalation-growth of a 2D-FeO layer in between graphene and Pt(111), which can decouple the graphene from the metal substrate. It is known that the 2D-FeO/Pt(111) system exhibits a moiré-structure with locally strongly varying surface potential. This variation in the substrate surface potential modifies the interface charge doping to graphene locally, causing nanometer-scale variation in its work function and Fermi-level shifts relative to its Dirac point.
منابع مشابه
Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111).
We use in situ scanning tunneling microscopy (STM) to investigate intercalation of the ferromagnetic 3d metals Ni and Fe underneath a graphene monolayer on Rh(111). Upon thermal annealing of graphene/Rh(111) with the deposited metal on top, we observe the formation of epitaxial monatomic nanoislands grown pseudomorphically on Rh(111) and covered by graphene. The size and shape of intercalated n...
متن کاملStructural and Electronic Properties of Epitaxial Graphene Superstructures on Transition Metal Surfaces: The Role of the Pinning Points
Graphene growth on metal surfaces is one of the most promising routes towards scalable production of high-quality graphene suitable for industrial applications. Conventionally, the growth of graphene is carried out on weakly interacting surfaces – typically Cu foils – where the substrate plays a double role: first, as a catalyst; and second, as an easy-to-remove platform. Several substrates are...
متن کاملControlling the electronic structure of graphene using surface-adsorbate interactions
Hybridization of atomic orbitals in graphene on Ni(111) opens a large energy gap of ≈2.8 eV between non-hybridized states at the K-point. Here we use alkali metal adsorbate to reduce and even eliminate this energy gap, and also identify a mechanism responsible for decoupling graphene from the Ni substrate without intercalation of atomic species underneath graphene. Using angle-resolved photoemi...
متن کاملStrains induced by point defects in graphene on a metal.
Strains strongly affect the properties of low-dimensional materials, such as graphene. By combining in situ, in operando, reflection high-energy electron diffraction experiments with first-principles calculations, we show that large strains, above 2%, are present in graphene during its growth by chemical vapor deposition on Ir(111) and when it is subjected to oxygen etching and ion bombardment....
متن کاملGraphene nucleation on transition metal surface: structure transformation and role of the metal step edge.
The nucleation of graphene on a transition metal surface, either on a terrace or near a step edge, is systematically explored using density functional theory calculations and applying the two-dimensional (2D) crystal nucleation theory. Careful optimization of the supported carbon clusters, C(N) (with size N ranging from 1 to 24), on the Ni(111) surface indicates a ground state structure transfo...
متن کامل